⌨️Technical Architecture
System Overview
The Robot Fighting Championship platform is a complex distributed system combining real-time game simulation, advanced AI decision-making, blockchain integration, and live streaming capabilities.
🏗️ High-Level Architecture
┌─────────────────────────────────────────────────────────────┐
│ CLIENT (Browser) │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Game Engine │ │ AI Renderer │ │ Wallet UI │ │
│ │ (WebGL 2D) │ │ (Real-time) │ │ (Phantom) │ │
│ └──────┬───────┘ └──────┬───────┘ └──────┬───────┘ │
└─────────┼──────────────────┼──────────────────┼─────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────────────────────────────────────────────────┐
│ APPLICATION LAYER │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Game Server │ │ AI Engine │ │ Betting API │ │
│ │ (Node.js) │ │ (Neural Net) │ │ (REST/WS) │ │
│ └──────┬───────┘ └──────┬───────┘ └──────┬───────┘ │
└─────────┼──────────────────┼──────────────────┼─────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────────────────────────────────────────────────┐
│ DATA LAYER │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Fight DB │ │ AI Models │ │ Solana RPC │ │
│ │ (PostgreSQL) │ │ (Trained) │ │ (Blockchain) │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────┘
│ │ │
└──────────────────┴──────────────────┘
▼
┌──────────────────┐
│ Pump.fun Stream │
│ (Live Broadcast) │
└──────────────────┘🎮 Game Engine
Core Components
Physics Engine
Custom 2D physics with pixel-perfect collision detection
60 FPS game loop using
requestAnimationFrameAABB (Axis-Aligned Bounding Box) collision system
Real-time hitbox visualization for debugging
Animation System
Sprite-based frame animation (8-22 frames per action)
State machine for animation transitions
Asset preloading to prevent visual glitches
Hardware-accelerated rendering via CSS transforms
State Management
RobotState {
position: { x, y }
velocity: { vx, vy }
health: 0-14
isAttacking: boolean
isDamaged: boolean
isJumping: boolean
facingDirection: "left" | "right"
lastAction: timestamp
}Performance Optimization
Sprite sheet compression (32x32 base, 3x scaled)
Efficient DOM manipulation (transform-only updates)
Minimal reflows and repaints
Asset caching with browser IndexedDB
🧠 AI System Architecture
Hybrid Neural Network Design
Our AI system uses a three-tier hybrid architecture:
1. Strategic Layer (High-Level Planning)
Model: Fine-tuned GPT-4o-mini transformer model
Input: Complete game state (positions, health, momentum)
Output: Strategic decisions (aggressive/defensive/tactical)
Update Frequency: Every 1.8-2.2 seconds
Purpose: Long-term strategy and adaptation
2. Tactical Layer (Mid-Level Execution)
Model: Custom feedforward neural network (784-256-128-64-5 architecture)
Input: Distance vectors, health ratios, velocity data
Output: Tactical actions (approach/retreat/setup/engage)
Update Frequency: Every 380ms
Purpose: Real-time combat decision-making
3. Execution Layer (Low-Level Control)
Model: Deterministic state machine with learned weights
Input: Current tactical state + opponent state
Output: Raw inputs (A/D/W/F keys)
Update Frequency: Every frame (16.6ms)
Purpose: Frame-perfect execution of tactics
Neural Network Specifications
Strategic Network (Transformer-based)
Architecture: GPT-4o-mini (fine-tuned)
Parameters: 8.2B
Training Data: 50,000+ combat scenarios
Context Window: 128K tokens
Specialization: Combat strategy & opponent modelingTactical Network (Custom CNN)
Input Layer: 784 neurons (game state vector)
Hidden Layer 1: 256 neurons (ReLU activation)
Hidden Layer 2: 128 neurons (ReLU activation)
Hidden Layer 3: 64 neurons (ReLU activation)
Output Layer: 5 neurons (softmax - action probabilities)
Training Method: Supervised learning + self-playDecision Pipeline
Game State → Preprocessing → Strategic AI → Tactical AI → Execution
↓ ↓ ↓ ↓ ↓
Raw Data → Normalized → High-level → Actions → Commands
Vectors Strategy Queue (A/D/W/F)Latency Breakdown:
State capture: ~1ms
Strategic inference: ~200ms (cached for 2 seconds)
Tactical inference: ~8ms
Command execution: <1ms
Total Decision Latency: ~10ms (excluding strategy cache)
🔗 Blockchain Integration
Solana Smart Contract
Contract Architecture:
pub struct FightBet {
pub fight_id: Pubkey,
pub bettor: Pubkey,
pub amount: u64,
pub fighter_side: Side, // Left or Right
pub timestamp: i64,
}
pub struct Fight {
pub fight_id: Pubkey,
pub left_fighter: String,
pub right_fighter: String,
pub status: FightStatus,
pub winner: Option<Side>,
pub total_pool: u64,
}Wallet Integration
Phantom Wallet for Solana transactions
Web3.js for blockchain interaction
Real-time balance updates via WebSocket
Transaction confirmation monitoring
Betting Flow
User connects Phantom wallet
Frontend creates unsigned transaction
Wallet signs transaction
Transaction submitted to Solana RPC
Smart contract validates and records bet
WebSocket notifies frontend of confirmation
User receives bet confirmation
📡 Real-Time Communication
WebSocket Architecture
Server → Client Events:
fight:start- Fight beginsfight:state_update- Position/health updates (60Hz)fight:hit- Damage event occurredfight:end- Fight concluded with winnerbet:placed- New bet recordedbet:payout- Winnings distributed
Client → Server Events:
bet:create- Place new betfight:subscribe- Subscribe to fight updateswallet:connect- Wallet connection event
Stream Integration (Pump.fun)
WebRTC for low-latency video streaming
Canvas capture API for game screen recording
H.264 encoding at 1080p60
Sub-second latency for live betting synchronization
🗄️ Data Layer
Database Schema
Fights Table:
CREATE TABLE fights (
fight_id UUID PRIMARY KEY,
left_fighter VARCHAR(50) NOT NULL,
right_fighter VARCHAR(50) NOT NULL,
winner VARCHAR(10),
status VARCHAR(20),
stream_url TEXT,
created_at TIMESTAMP DEFAULT NOW()
);Bets Table:
CREATE TABLE bets (
bet_id UUID PRIMARY KEY,
fight_id UUID REFERENCES fights(fight_id),
wallet_address VARCHAR(44) NOT NULL,
amount BIGINT NOT NULL,
fighter_side VARCHAR(10) NOT NULL,
odds DECIMAL(10,2),
payout BIGINT,
created_at TIMESTAMP DEFAULT NOW()
);Caching Strategy
Redis for active fight state (in-memory)
PostgreSQL for historical data
CDN for fighter sprites and assets
Client-side caching for AI model weights
🚀 Deployment Architecture
Production Environment
Frontend:
Hosted on Vercel (Global CDN)
Automatic HTTPS
Edge caching for static assets
WebSocket proxy for real-time connections
Backend:
Node.js server on DigitalOcean/AWS
PM2 for process management
Nginx reverse proxy
SSL termination
Load balancing for multiple instances
Database:
Managed PostgreSQL (DigitalOcean/RDS)
Automated backups
Read replicas for scaling
Blockchain:
Solana Mainnet RPC endpoints
Fallback to multiple RPC providers
Transaction retry logic with exponential backoff
🔒 Security Considerations
Smart Contract Security
Audited by [Security Firm Name]
Reentrancy protection
Rate limiting on bets
Admin key management via multisig
API Security
Rate limiting (100 req/min per IP)
CORS configured for known origins
Input validation and sanitization
SQL injection prevention (parameterized queries)
Wallet Security
No private key storage on server
All transactions signed client-side
Wallet permissions limited to betting only
Last updated

